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Abstract

Link prediction is an important task in social network analysis and mining be-

cause of its various applications. A large number of link prediction methods have

been proposed. Among them, the deep learning-based embedding method ex-

hibits excellent performance, which encodes each node and edge as an embedding

vector, enabling easy integration with traditional machine learning algorithms.

However, there still remain some unsolved problems for this kind of methods,

especially in the steps of node embedding and edge embedding. Firstly, they

share the same weight, rather than assign different reasonable weights, to all

neighbors of different orders to obtain the node embedding. Secondly, they

can hardly keep the symmetry of edge embeddings obtained from node repre-

sentations by direct concatenation or other binary operations like mean and

Hadamard Product. In order to solve these problems, we propose a weighted

symmetric graph embedding approach for link prediction. In node embedding,

the proposed approach aggregates neighbors in different orders with different

weights. Specifically, the weight of the kth-order neighbors is set to 1/⟨d⟩k−1

where ⟨d⟩ is the average degree of the network. In edge embedding, the pro-
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posed approach bi-directionally concatenates node pairs both forwardly and

backwardly to guarantee the symmetry of edge representations while preserving

local structural information. Experimental results show that our proposed ap-

proach can better predict links in a network, outperforming the state-of-the-art

methods. The appropriate weight assignment and the bi-directional concatena-

tion enable us to learn more accurate and symmetric edge representations for

link prediction.

Keywords: graph embedding, graph neural network, link prediction, weighted

aggregation, symmetric concatenation

1. Introduction

A social network reflects the reality of human communities, in such net-

works, a node refers to a person or social entity, and a link corresponds to the

relationships between them. Social networks are highly dynamic and complex

because of the continuously changing of these relationships. Link prediction is5

an important task in social network analysis and mining, which aims to predict

missing links or links that are likely to occur in the future [1, 2]. There are nu-

merous applications related to link prediction, such as recommendation systems

[3], knowledge graph completion [4], influence analysis [5], community detection

[6], even face clustering [7] and multiple object tracking [8].10

In recent decades, a large number of link prediction methods have been

proposed, which can be grouped into three categories, i.e. similarity-based [9],

learning-based [10] and embedding-based methods [11]. A couple of survey

literatures [9, 10, 11, 12] reviewed the existing link prediction methodologies

and provided comprehensive analysis from different concerns.15

Similarity-based methods [9, 10, 11] calculate the similarity of node pair

based on the shared local, global or hybrid structural properties, including node

neighborhoods, paths between nodes, etc. A similarity score is assigned to

each unobserved link and the top-k links with the highest score are predicted.

Although simple and working well in practice, this kind of methods is based20
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on an assumption that two nodes are more likely to connect if they have many

common neighbors, which limits their effectiveness on networks where these

assumptions fail [13]. Considering this regard, a more reasonable way should be

learning suitable heuristic features from a given network instead of predefining

[13].25

Learning-based methods [10, 11, 12] use a model to learn with given features,

extract latent patterns and eventually predict potential links. Available mod-

els include the probabilistic model [14], traditional supervised learning model

[15], and deep model [16]. Different from similarity-based methods, learning-

based methods focus on not only the topological information but also the non-30

topological information of social networks [10], and all the information is used

as an entry of a feature vector for learning a model. However, extracting some

non-topological information is not easy, the curse of dimensionality is another

challenge for learning-based methods [11].

In order to solve the dimensional disaster problem, embedding-based meth-35

ods [11] map the higher-dimensional nodes of a graph to a lower-dimensional

vector space by preserving the node neighborhood structures and other network

properties. Recently, this kind of methods has become widely popular due to

its own advantages in capturing inherent dynamics of the network either explic-

itly or implicitly [17]. In addition, Grover et al. [18] found that embedding is40

more accurate than traditional similarity-based or learning-based link prediction

methods. Embedding technique mainly includes three categories [17]: matrix

factorization [19, 20, 21] , random walk [22, 18] and deep learning [23, 24].

The growing research on deep learning based embedding has led to a deluge of

applications to link prediction. Generally speaking, this kind of methods first45

obtains the node representation and then extracts the edge representation by

combining the node representation to predict the likely but unobserved links

finally. Goyal et al. [17] demonstrated the excellent performance of deep learn-

ing based embedding in the task of link prediction. However, there still remain

some unsolved problems for this kind of methods:50

(1) When obtaining the node representation, many traditional methods take
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not only the first-order neighbors but also some high-order neighborhood in-

formation of the target nodes into account to guarantee the accuracy of node

embedding. However, as far as we know, they all ignore the difference between

different orders. In fact, although the target node in social networks interacts55

not only with first-order neighbors but also with higher-order neighbors, the

contributions of different orders are different. Obviously, the first-order neigh-

bors are more important than the second-order in node embedding. Therefore,

they should be assigned with different weights.

(2) When obtaining the edge representation from node representation, some60

methods directly concatenate node representations [3], and others mix node

representations by averaging or through Hardmard product [4]. The first branch

could preserve local structural information but can hardly keep the symmetry

of embedded edges. Suppose there are two nodes u and v in an undirected

graph. Apparently, the edge embedding of (u, v) and (v, u) should be the same.65

The second branch could guarantee symmetry but at a cost of losing some

local structural information. In summary, neither of the above two methods

could obtain a high-qualified edge embedding that balances both local structural

information and symmetric presentation, which will affect the performance of

link prediction.70

To fill the above two gaps, this paper proposes a novel embedding approach

for link prediction named Weighted Symmetric Graph Embedding (WSGE).

The proposed approach first assigns weights to different orders of neighbors to

construct the weight matrix. Then, the propagation and updating of a GNN

(Graph Neural Network) are completed based on the weight matrix to obtain75

the embedded node representation. After that, node pairs are concatenated bi-

directionally (both forwardly and backwardly) and then mixed to guarantee the

symmetry of edge representations while preserving local structural information.

The embedded edges serve as the input of DNN (Deep Neural Networks) to

predict the links finally.80

The contributions of this paper are summarized as follows.

(1) To solve the problem that all orders of neighbors are viewed equally in
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traditional node embedding, this paper proposes a novel method to aggregate

neighbors in different orders with different weights. Specifically, the weight ma-

trix is constructed by aggregating the adjacency matrices with different powers85

corresponding to different weights. The weight of the kth-order neighbors is set

to 1/⟨d⟩k−1 where ⟨d⟩ is the average degree of the network. On one hand, the

weights that balance multi-order neighbors can improve the propagating and

updating process of GNN to obtain node representations. On the other hand,

due to the kth row in the weight matrix contains all the weights of multi-order90

neighbors for updating the kth node, our method could use mini-batch forward

propagation to train the GNN while other methods have to use the whole graph

data as the input.

(2) To solve the problem that traditional edge embedding methods can

hardly keep both local structural information and symmetric presentation simul-95

taneously, this paper proposes a novel approach to combine node representations

effectively. Specifically, node pairs are first concatenated bi-directionally with

full local information to obtain two opposite edges. Then, these edges are trained

separately through a DNN to obtain their corresponding representations. After

that, each pair of trained opposite edge representations are combined through100

a mixing operation to guarantee the symmetry of the final embedded edges.

Experimental results on five real-world networks demonstrate that the pro-

posed WSGE significantly improves the state-of-the-art by learning more accu-

rate and symmetric edge representations that better preserve the graph struc-

ture. Thus, we can better complete the link prediction task in undirected graphs.105

2. Related Works

Traditional embedding-based link prediction methods mainly include three

categories, i.e. matrix factorization [19, 20, 21], random walk [22, 18], and deep

learning [23, 24].

The matrix factorization [19] is a typical dimensionality reduction technique110

for link prediction, which represents the connections between nodes in the form
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of a matrix and factorizes this matrix to obtain the node embedding. Compared

with previous methods, the node embedding obtained by matrix factorization

could improve the efficiency of link prediction. Local Linear Embedding (LLE)

[21] is a classic matrix factorization method for node embedding which assumes115

that each node is a linear combination of its neighbors in the embedding space.

Followed by LLE, M. Belkin et al. [20] proposed Laplacian Eigenmaps (LE) to

obtain the node embedding by decomposing the Laplacian matrix. Similarly,

Ahmed A et al. [25] proposed Graph Factorization (GF) to obtain the node em-

bedding by decomposing the adjacency matrix. Due to that these two methods120

only involve first-order neighbors, they would fail to capture the global infor-

mation of the graph. GrapRep [26] extends LE and GF to preserve high-order

proximity by decomposing the k-order of transition probability matrix rather

than only the first order. Though GrapRep takes into account the k-order

neighbors, it directly integrates features of each order without considering the125

weights of different orders. Besides, Wang et al. [27] proposed the joint em-

bedding method which considers the set of graphs together. It takes a matrix

factorization approach to extract features for multiple graphs.

Random walk methods including DeepWalk [22] and Node2vec [18]. They

are both based on a neural language model, i.e. SkipGram [28], which aims130

to maximize the co-occurrence probability among words that appear within a

window . DeepWalk first generates a large number of random walk sequences

through sampling. Then it uses SkipGram and hierarchical softmax to model

the probability of the node pair in each local window. After that, it maximizes

the co-occurrence probability among nodes that appear within a window to135

obtain the context information (of nodes) for node embedding. Node2vec further

generalizes DeepWalk with Breadth-First Search (BFS) and Depth-First Search

(DFS) on random walks. It also employs SkipGram with negative sampling to

learn the node representation [29]. These methods involve high-order neighbors

when applying random walks, which could produce node representations that140

preserve the graph structure [30]. However, the nodes in the same window share

a uniform weight, ignoring the weight distribution of each node’s neighborhood.

6



As a deep learning model, the convolutional neural network (CNN) has

been widely used in graph embedding, thus graph neural networks (GNNs) [31]

emerged. GNNs combine the feature information and the graph structure to145

learn better representations of graphs via feature propagation and aggregation

[32]. In recent years, embedding techniques that exploit GNNs to obtain node

representations have been proposed, such as GCN [33], GraphSAGE [34], and

GAT [35]. GCN is a scalable model since it only aggregates features from local

neighborhoods. Meanwhile, the embedded results of GCN could also charac-150

terize global neighborhoods through multiple iterations. GraphSAGE generates

embeddings by sampling the local neighborhood for feature aggregation. In this

way, it can use a mini-batch forward propagation algorithm to train data. GAT,

based on the spatial graph convolution network, introduces attention mechanism

into propagation process, thus the hidden state of each node is calculated by155

paying attention to neighbors. However, GAT only involves first-order neigh-

bors and assigns different weights to all these neighbors, resulting in higher

complexity.

All above embedding methods are node-based, and the edges are mapped

to low-dimensional vectors indirectly. More recently, an edge-based embedding160

method Edge2vec [36] is proposed, which maps the edges to a low-dimensional

space directly. Meanwhile, a method of co-embedding nodes and edges [37] is

also proposed, which directly embeds both nodes and edges to a latent feature

space. Both of them are effective methods for graph embedding. However, the

number of edges is usually far greater than that of nodes in a network, thus165

embedding edges directly may cost more time [36], which makes it inefficient for

link prediction.

To sum up, when embedding nodes, some methods view all orders of neigh-

bors equally, ignoring the difference between them. While other methods assign

different weights to all neighbors, resulting in higher complexity. Therefore,170

this paper proposes a novel approach to aggregate neighbors in different or-

ders with different weights. The weights that balance multi-order neighbors

can improve the propagating and updating process of GNN to obtain node rep-
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resentations. Moreover, traditional edge embedding methods including directly

concatenating or Hadamard Product can hardly keep both local structural infor-175

mation and symmetric presentation simultaneously. Hence, this paper further

proposes a novel concatenating approach where node pairs are concatenated

bi-directionally with full local information to obtain two opposite edges. Then,

each pair of trained opposite edge representations are combined through a mix-

ing operation to guarantee the symmetry of the final embedded edges.180

3. Method

To better solve the link prediction problem, we propose a novel Weighted

Symmetric Graph Embedding (WSGE) approach, which consists of four parts:

one-hot encoding, weighted node embedding, symmetric edge embedding, and

link prediction. The framework of WSGE is shown in Figure 1.185

K=1

K=2

Figure 1: Framework of the Weighted Symmetric Graph Embedding (WSGE) method.

Firstly, WSGE obtains the one-hot encoding vector of each node. Secondly,

it extracts the node embedding by aggregating and updating node features based

on multi-order neighbors with different weights. The final node embeddings

are obtained through feature space mapping which is implemented by a multi-

layer perceptron (MLP). Thirdly, edge embeddings are acquired based on bi-190

directional concatenating to ensure the uniqueness of edges as well as preserving

the local structure. Finally, with the edge embedding results, the link prediction

problem is transformed into a binary classification task and a fully connected
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neural network is employed to predict whether there is a link between two nodes.

3.1. One-hot encoding195

The initial nodes have no features, which makes it impossible to reveal the

differences between nodes through aggregating. Thus, WSGE applies one-hot

encoding to make the features of each node different from each other. For a

network with N nodes, the one-hot encoding of node i is an N -dimensional

vector(1*N) with the kth element being 1 and all others 0. The link prediction200

task aims to predict missing links or links that are likely to occur between two

nodes. Therefore, the inputs are the vectors of two nodes encoded by one-hot

encoding, respectively.

3.2. Weighted node embedding

A node in social networks interacts with not only first-order neighbors but205

also higher-order neighbors. Moreover, aggregating different order neighbors

with the same weight will make the embeddings more biased towards the high-

order neighbors and causes the loss of local structural information. Therefore,

we should not only take multi-order neighbors into account but also assign them

with different weights during the node aggregating process.210

According to general GNNs, node embedding must involve two steps, i.e.

neighbor features propagation and target node status update. In order to avoid

the node iteration and accelerate the training process, our proposed WSGE

approach integrates those two steps into a weighted matrix, which is defined as

follows:215

A =
∑
k

δkA
k (1)

where k is the order of neighbors. Ak is a k-hop adjacency matrix that reflects

the strength of neighborhood relationship in k hops between two nodes, which is

used to preserve the high-order neighbors’ features. δk is the weight for kth-order

neighbors.
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As previously mentioned, aggregating different order neighbors with the220

same weight will make the embeddings more biased towards the high-order

neighbors. Therefore, to balance neighbors in different orders, we set δk to

1/⟨d⟩k−1 where ⟨d⟩ is the average degree of the corresponding network. The

average degree implies the exponential relationship w.r.t. the number of nodes

in different orders. By introducing 1/⟨d⟩k−1, a kind of quantity-aware weights225

could be assigned to multi-order neighbors when aggregating them to the cen-

tral node. Consequently, different order neighbors would be roughly balanced

according to their quantities.

Then, based on A, the weighted vector of each node is represented as

ai = xiA (2)

where xi is the one-hot encoding vector of node i. Through multiplying the230

one-hot encoding vector xi with a weighted matrix A, ai represents the ith row

in the weighted matrix which contains all the weights of multi-order neighbors

for updating the ith node. In this manner, our method could use mini-batch

forward propagation to train the GNN while other methods have to use the

whole graph data as the input.235

WSGE does not perform any training on the initial embedding state but

retains the local structure of the graph through aggregating, updating, and fea-

ture space mapping. Therefore, the initial node embeddings h0
i can be obtained

by the following formula:

h0
i = aiH

0 (3)

where H0 is the whole graph embedding, which is obtained based on random240

initialization of normal distribution. Through matrix multiplication of ai and

H0, the initial node embedding h0
i can be acquired. Meanwhile, the two steps

of the neighbor feature propagation and target node status updating can be

completed, Thus, WSGE reduces the iterative process of aggregation and update

in the general GNN model.245
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In the following, we use a schematic network (shown in Figure 2) to show the

difference between the traditional node aggregation method and the weighted

aggregation method proposed in this paper. The representations of all nodes are

initialized as 1 rather than vectors for better observing the aggregating process.

(a) traditional aggregation (b) weighted aggregation

Figure 2: Different node aggregation methods.

Figure 2(a) shows the process of the traditional node aggregation. The target250

node has five first-order neighbors and eight second-order neighbors. The five

first-order neighbors need to aggregate their own neighborhood (the second-

order neighbors of the target node) to obtain corresponding embeddings, and

then aggregate their embeddings to the target node. Finally, the target node is

represented as 17 according to the embedding result. In contrast, our proposed255

approach does not need any iteration. As shown in Figure 2(b), through a

customized weight matrix, multi-order neighbors can be directly aggregated to

the target node and then the embedding of the target node is obtained. The

target node is represented as 7.2 according to the embedding result, which is

closer to the aggregation value 6 of involving only the first-order neighbors.260

In other words, our proposed weighted aggregation can ensure that the first-

order neighbors have a greater impact on the target node than the second-

order. Thus, the embedding result would not be overly covered by high-order
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neighbors, which could well retain the local structural information. Moreover,

multi-order neighbors are directly aggregated to the target node, which enables265

the mini-batch forward propagation for training the GNN.

After neighbor features propagation and target node status updating, a

multi-channel single-layer neural network is adopted to map the obtained feature

vector to a low-dimensional space. Formally, the mapping process is represented

as270

hi = σ(W1h
0
i + b1) + σ(W2h

0
i + b2) (4)

where hi is the final node embedding, W1, W2 are the weight matrices, b1, b2

are the bias in the fully connected neural network. σ is the activation function.

Through feature space mapping, the final node embedding hi can be obtained.

In summary, WSGE employs a weighted matrix to obtain node embeddings

by completing neighbor feature propagation and node status update, which not275

only balances neighbors in different orders through appropriate weight assign-

ment but also enables mini-batch forward propagation for training.

3.3. Symmetric edge embedding

Extracting the edge embedding from the node embedding is a key step for

link prediction. During this process, the following two conditions should be280

met: 1) For a pair of nodes i, j, the embeddings of (i, j) and (j, i) should be

the same in an undirected graph. 2) The edge embeddings generated from node

representations should retain the local structural features of both the edge and

the corresponding node pair.

However, some traditional methods directly concatenate node embeddings285

[3, 36, 37] and others mix node embeddings by averaging or Hadamard Product

[4, 30]. The former will cause the discrepancy between (i, j) and (j, i), i.e.

there will be two different representations for the same edge. Take the schematic

network shown in Figure 3(a) as an example, the node embeddings of two nodes

in orange are 4 and 2, respectively, the direct concatenating method will produce290

two different edge representations, i.e. (4,2) and (2,4). The latter can obtain

the same edge representation even from different node representations, however,
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it will result in the loss of local structural information. Take the schematic

network shown in Figure 3(b) as another example, the node embeddings of two

nodes in orange are both 3. If the averaging or Hadamard Product methods295

are employed to generate the edge embedding, the results of the two nodes in

Figure 3(a) would be the same as the results of the two nodes in Figure 3(b),

failing to retain the local structural information of these schematic networks. In

summary, none of those methods could obtain a high-qualified edge embedding

that balances both local structural information and symmetric presentation,300

which will affect the performance of link prediction.

(a) (b)

Figure 3: Traditional concatenating methods.

WSGE provides a bi-directional concatenating approach to generate the cor-

responding edge representations, which concatenates node pair’s representations

bi-directionally. Suppose there are two nodes i,j, and the final node embeddings

hi, hj are d-dimensional vectors. Firstly, the node embeddings hi, hj will be305

concatenated bi-directionally to compose two 2d-dimensional edge embedding

vectors gforward(hi, hj), gbackward(hi, hj). Secondly, these two vectors are put

into a deep neural network to generate two d-dimensional edge embeddings

f(gforward(hi, hj)), f(gbackward(hi, hj)). Finally, we can obtain the final em-

bedded edge representation ei,j from these two d-dimensional edge embeddings310

with an addition operation. Specifically, the final edge embedding can be defined

as follows:

ei,j = f(gforward(hi, hj)) + f(gbackward(hi, hj)) (5)
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where ei,j is the final edge embedding. gforward(hi, hj) and gbackward(hi, hj)

denotes the representations of concatenating hi, hj and hj , hi respectively. f

represents a deep neural network that maps a 2d-dimensional edge embedding315

vector into d-dimension.

The structure of the deep neural network is shown in Figure 4, which contains

two fully connected layers. Following each fully connected layer, there is a one-

dimensional batch normalization layer to ensure that the input of each layer

is equally distributed during the training process. Relu(x) = max(0, x) is an320

element-wise activation function.

Figure 4: The structure of the deep neural network.

In summary, our proposed concatenating approach can ensure the identity

between edge embeddings ei,j and ej,i while preserving the local structural fea-

tures of the graph, avoiding the problem of lacking either symmetric presentation

or structural information in traditional concatenating methods.325

3.4. Link prediction

Our proposed WSGE obtains the node embeddings by aggregating nodes of

different orders with different weights, then these embedding results are con-

catenated bi-directionally to obtain the edge embeddings. After that, the link

prediction problem is transformed into a binary classification. WSGE employs330

a fully connected neural network to this task, and Figure 5 shows the details of

the neural network.

Since the dimension of the edge embedding is d, the input dimension of the

fully connected network is also d. Due to that the output has only two cate-
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Figure 5: Link prediction process.

gories, the output dimension is set to 2. For the stability of the entire training335

process, the input layer and hidden layer are followed by a batch normalization

layer, and Relu is adopted as the activation function. The output layer utilizes

Softmax as the activation function. Thus, the final link prediction result is a

two-dimensional vector [y1, y2].

3.5. Algorithm description340

The pseudocode of the proposed WSGE approach is shown in Algorithm 1.

The input provides the depth of the order and corresponding weights (1/⟨d⟩k−1

in this paper) for the aggregating process, as well as the one-hot coding for all

nodes. Thus, lines 1-5 of Algorithm 1 generates the initial node embedding h0
i

based on the weighted matrix A. Then, lines 6-8 obtain the final node embed-345

ding via a multi-channel single-layer neural network, with σ as the activation

function. At last, The embedded edge representations are obtained through the

proposed bi-directional concatenation in lines 9-13.

4. Experiment and results

4.1. Datasets and metrics350

Five benchmark datasets are used in our experiments for the link prediction

task, including US-Air [38], Biology [39], Blog [40], Hamster [41], and Yeast [42].

US-Air [38] is an American aviation network graph. The Biology [39] network

(Bio-CE-GT) belongs to the category of biological networks. Blog [40] is a U.S.

political blog graph. Hamster [41] is a graph of user relationships on the website355

hamsterster.com. Yeast [42] is an interactive network diagram between yeast

15



Algorithm 1 Weighted Symmetric Graph Embedding (WSGE) method.

Input: whole graph embedding H0;

depth K;

adjacency matrices Ak;

activation function σ;

weight δk;

one-hot encoding xi;

nural network f ;

concatenating method gforward, gbackward

Output: Edge representations ei,j for i = 1, 2, . . . , N ; j = 1, 2, . . . , N ; i ̸= j

1: A =
∑K

k=1 δkA
k;

2: for i = 1, 2, . . . , N do

3: ai = xiA;

4: h0
i = aiH

0;

5: end for

6: for i = 1, 2, . . . , N do

7: hi = σ(W1h
0
i + b1) + σ(W2h

0
i + b2);

8: end for

9: for i = 1, 2, . . . , N ; j = 1, 2, . . . , N ; i ̸= j do

10: gforward(hi, hj) = cat(hi, hj); //”cat” means concatenating

11: gbackward(hi, hj) = cat(hj , hi);

12: ei,j = f(gforward(hi, hj)) + f(gbackward(hi, hj));

13: end for
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proteins. The statistics of these datasets are shown in Table 1, | V | denotes

the number of nodes, | E | refers to the number of edges and davg represents

the average degree. It should be noted that the datasets used in this paper are

all undirected, unweighted, and homogeneous networks.360

Table 1: Simulation experiment datasets.

Network | V | | E | davg

US-Air 332 2126 12.81

Biology 924 3239 7.01

Blog 1222 16714 27.36

Hamster 1858 12534 13.49

Yeast 2375 11693 9.85

Three measurements are adopted to evaluate those methods, including the

Area Under the receiver operating characteristic Curve (AUC), accuracy(AC),

and average precision(AP).

accuracy =
TP + TN

P +N
(6)

precision =
TP

TP + FP
(7)

AUC curve describes the fraction of true positive rate (TPR) versus the

fraction of false positive rate (FPR) at various threshold setting [9]. The true365

positive rate and false positive rate can be evaluated by the following formulas

[11]. True Positive Rate (TPR):

TPR =
TP

TP + FN
(8)

False Positive Rate (FPR):

FPR =
FP

FP + TN
(9)
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To verify the effectiveness of our proposed WSGE approach, we have chose

eight graph embedding methods, which are listed as follows.370

(1) DeepWalk[22]: DeepWalk is based on the Skip-gram, and employs ran-

dom walks to obtain the context information (of nodes) for node embedding.

(2) Node2vec[18]: Node2vec further generalizes DeepWalk with Breadth-

First Search (BFS) and Depth-First Search (DFS) on random walks.

(3) GCN[33]: GCN is based on the CNN, and is a scalable model since it375

only aggregates features from local neighborhoods, then characterizes the global

neighborhood through multiple iterations.

(4) GraphSAGE[34]: GraphSAGE generates embeddings by sampling the

local neighborhood for feature aggregation, and then use a mini-batch forward

propagation algorithm to train data.380

(5) GAT[35]: GAT introduces the attention mechanism into the propagation

process, and assigns different weights to all first-order neighbors.

(6) DeepEdge[30]: In DeepEdge, edges are modeled as functions of nodes,

then a new objective-graph likelihood is proposed to jointly optimize the edge

function and node representations.385

(7) CensNet-VAE[37]: CensNet-VAE is a general graph embedding frame-

work, which embeds both nodes and edges to a latent feature space by using

a line graph of the original undirected graph, and combines with Variational

Autoencoder.

(8) SEAL[13]: SEAL extracts a local enclosing subgraph around each tar-390

get link, and then uses GNN to learn general graph structure features for link

prediction.

In terms of parameter settings, since DeepWalk and Node2vec are graph

embedding methods based on random walks, they share many similar values.

For both of them, the length of the walk is 64 and the window size is set395

to 5. For Node2vec, the return parameter p and the access parameter q are

both set to 1. Both GCN and GraphSAGE are graph embedding methods that

only consider second-order neighbors. Other comparison methods follow the

parameter settings in their original paper.
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4.2. Evaluation of the proposed weight assignment400

WSGE assigns different weights to different orders while the neighbors in the

same order share the same weight. The weight of kth order is set as 1/⟨d⟩k−1

where ⟨d⟩ is the average degree of the corresponding network. Previous methods

which involve high-order neighbors only assign the same weight to all neighbors.

In contrast, GAT gives all neighbors with different weights while only involves405

the first order. To compare the performance between different weight assignment

methods, we calculate AUC, AC, and AP on all datasets. Figure 6 covers the

results when involving neighbors of two orders.

As shown in Figure 6, the WSGE approach has a good performance in almost

all datasets, especially referring to AUC. Although the GAT method performs410

well on some datasets in terms of accuracy, it is the worst in terms of precision

and its time complexity is relatively high. Besides, assigning the same weight

to all orders only works well on the Blog network. The results indicate that

our proposed WSGE approach could well preserve the structural information

for link prediction with a fewer time cost.415

When involving the third-order neighbors, WSGE assigns the weights for

neighbors in these three orders with 1, 1/⟨d⟩, and 1/⟨d⟩2, respectively. Results

are shown in Figure 7.

When involving the third-order neighbors, the proposed WSGE approach

still achieves the best performance. However, compared to Figure 6, involving420

the third-order neighbors is not better than considering only the first two orders

and may even lead to worse results. The reason is that general complex networks

obey the power-law distribution. That is, the number of second-order neighbors

is far smaller than that of the third-order. Therefore, involving the third-order

neighbors will introduce noise data (false link information), which will drag down425

the link prediction results. It is in accord with the results of Zhang et al. [13],

who have proved that the effective order of node embedding is not that high. In

fact, the second-order can safely guarantee to learn high-order features. Thus,

our WSGE approach only involves the first-order and second-order neighbors in

the following experiments.430

19



Yeast Blog Hamster Biology US-Air
0.75

0.8

0.85

0.9

0.95

1

A
P

(1.0,1.0)

(1.0, 1/〈d〉)
GAT

(a)

Yeast Blog Hamster Biology US-Air
0.75

0.8

0.85

0.9

0.95

1

A
C

(1.0,1.0)

(1.0, 1/〈d〉)
GAT

(b)

Yeast Blog Hamster Biology US-Air
0.85

0.9

0.95

1

A
U

C

(1.0,1.0)

(1.0, 1/〈d〉)
GAT

(c)

Figure 6: Results when involving neighbors of the first two orders.
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Figure 7: Results when involving neighbors of the first three orders.
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4.3. Evaluation of the proposed bi-directional concatenating

When generating edge embeddings from node representations, a certain con-

catenating method should be involved, such as mean, Hadamard Product, di-

rect concatenating, and bi-directional concatenating proposed in this paper.

In this subsection, we compare the impact of different concatenating methods435

on the final prediction result. The node embeddings of DeepWalk, Node2vec,

GCN, GAT, GraphSAGE, and WSGE are combined with different concate-

nating methods to demonstrate their corresponding performance on the link

prediction task. Results are shown in Figure 8.

In Figure 8, ‘avg’, ‘hm’, ‘dir’ and ‘dc’ denote employing mean, Hadamard440

Product, direct concatenating (only applicable for WSGE), and bi-directional

concatenating approach proposed in this paper, respectively. It should be noted

that only AUC is calculated to compare different concatenating methods w.r.t.

their performance on the link prediction task. Through the above experiments,

the bi-directional concatenating approach proposed in this paper can be easily445

combined with various node embedding methods. Compared with other concate-

nating methods such as mean, Hadamard Product, and direct concatenating,

the proposed bi-directional concatenating approach achieves the best perfor-

mance in almost all cases. It is due to that the bi-directional concatenation can

completely preserve the local structural characteristics of the symmetric edge450

as well as two connected nodes, which results in better performance on the link

prediction task.

4.4. Performance of link prediction

The performances of different methods on the link prediction task are mea-

sured with AUC, AC, and AP. US-Air, Biology, Blog, Hamster, and Yeast are455

adopted as benchmark datasets.

For an undirected, unweighted network, all edges are symmetric, i.e. there

is no difference between edge (i, j) and (j, i). For all datasets, we employ the

entire adjacency matrix (except the diagonal elements) other than the upper

triangular matrix of the adjacency matrix. In other words, if (i, j) appears in460
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Figure 8: Results of different concatenating methods.

the training set, the testing set may contain (j, i). To test these methods on

symmetric data prediction, 60% of data is employed as the training set and 40%

of the data is employed as the testing set. The results of our proposed WSGE
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and other compared methods are shown in Table 2.

Compared with those methods, our proposed WSGE approach shows bet-465

ter performance as it takes the symmetry of edges into account for undirected

graphs. For WSGE, the average values of the three measures AUC, AC, and

AP on the five datasets are 0.97, 0.9334, and 0.9252, respectively. It can be

seen from Table 2 that WSGE is better than other methods in almost all cases.

DeepEdge is better than WSGE w.r.t. AC on the US-Air network and SEAL is470

better than WSGE w.r.t AP on the Blog network.

Table 2: Results on link prediction.

Network DeepWalk Node2vec GCN GAT GraphSAGE DeepEdge CensNet SEAL WSGE

US-Air

AUC 0.8034 0.8359 0.8530 0.9040 0.9012 0.8920 0.8895 0.9460 0.9730

AC 0.8606 0.7795 0.7950 0.9170 0.8383 0.9240 0.9028 0.8703 0.9170

AP 0.7793 0.7842 0.7769 0.9040 0.8145 0.7570 0.8042 0.8472 0.9170

Biology

AUC 0.9114 0.7493 0.7620 0.8610 0.8611 0.8740 0.9137 0.9510 0.9750

AC 0.8992 0.6844 0.7880 0.8630 0.7779 0.8600 0.8333 0.9141 0.9500

AP 0.7932 0.6856 0.7350 0.8610 0.7701 0.7650 0.8343 0.9082 0.9330

Blog

AUC 0.8693 0.8145 0.9070 0.9130 0.9114 0.8820 0.9046 0.9313 0.9590

AC 0.8329 0.7437 0.8570 0.8570 0.8300 0.8230 0.8379 0.8436 0.9020

AP 0.7706 0.7430 0.8650 0.8380 0.8427 0.8050 0.8381 0.9250 0.9080

Hamster

AUC 0.8962 0.7812 0.8157 0.8500 0.8900 0.8530 0.9081 0.9452 0.9720

AC 0.9158 0.7178 0.7310 0.8220 0.7780 0.8860 0.8357 0.8901 0.9320

AP 0.8034 0.7165 0.7328 0.7690 0.8150 0.6950 0.8359 0.9105 0.9290

Yeast

AUC 0.9133 0.7145 0.8340 0.8390 0.9260 0.9160 0.9190 0.9585 0.9710

AC 0.9527 0.6619 0.8260 0.8590 0.8100 0.8910 0.8564 0.8984 0.9660

AP 0.8192 0.6621 0.7930 0.7670 0.8480 0.8300 0.8567 0.8946 0.9390

5. Conclusion

Link prediction is an important task in social network analysis and mining

because of its numerous applications. Deep learning-based embedding exhibits

excellent performance in the task of link prediction. However, there still remain475

some unsolved problems for this kind of methods. On one hand, they share

the same weight to neighbors of different orders during the process of the node
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propagating and updating. On the other hand, they can hardly keep the sym-

metry of embedded edges obtained from node representations by some binary

operation methods like mean, Hadamard Product and direct concatenation.480

To address these problems, this paper proposes a novel embedding approach

WSGE for link prediction. The proposed approach aggregates neighbors in dif-

ferent orders with different weights to obtain node representations. After that,

the proposed approach concatenates node pairs bi-directionally (both forwardly

and backwardly) and then mixes to guarantee the symmetry of edge repre-485

sentations while preserving local structural information. Experimental results

on five datasets show that, through the appropriate weight assignment and bi-

directional concatenation, the proposed WSGE can better predict the possibility

of existing links in a network, outperforming state-of-the-art methods.

For future steps, we are interested in the following directions. (1) When490

aggregation, involving all nodes in each order may introduce noise. Therefore,

we can further select the appropriate nodes of each order based on their contri-

bution to the central node. (2) When concatenating, the different contributions

of nodes at both ends are not considered. In future work, we can assign different

weights in line with the contribution of two nodes during the edge formation495

process.
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